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Abstract-In the context of a purely mechanical rate-type theory of plasticity, and utilizing a strain
space formUlation, an infinitesimal theory is developed for motions superposed on any given
motion of an elastic-plastic material. The given motion may involve all forms of elastic-plastic
deformation, including both loading and unloading, and in addition, the loading conditions are
allowed to change due to the superposed motion. The infinitesimal theory is properly invariant
under arbitrary finite superposed rigid motions.

I. INTRODUCTION

A general thermodynamical theory of finitely deforming elastic-plastic materials was
presented by Green and Naghdi [1,2] and has been utilized in a large number of subsequent
developments. The basic equations of the theory in [1,2] are nonlinear ordinary and partial
differential equations. Due to the lack of general mathematical techniques for dealing with
such equations, it is extremely difficult to obtain exact solutions to all but the simplest of
initial boundary-value problems. To treat more difficult problems, one must resort to
approximate methods.

The theory of small deformations superposed on an arbitrary known deformation is
based on a systematic local linear approximation to the nonlinear theory. This type of
approximation to a general theory has been found to provide in special cases a reasonable
approximation to the observed behavior of materials. Indeed, the classical linear theories
of elasticity and plasticity, which themselves may be regarded as theories of small
deformations superposed on a zero deformation, have met with much success in their
predictions of the behavior of metals even under moderately large deformations.

In the context of nonlinear elasticity, the general theory of small deformations
superposed on a large deformation originated in the 1950s with the work of Green et al.
[3]. An account of this theory, with several applications, is contained in [4]. A somewhat
different treatment of the theory was given by Toupin and Bernstein [5]. A presentation
of the subject together with additional references is to be found in [6].

A shortcoming of the above formulations of the theory of small deformations
superposed on a large deformation of an elastic material is that requirements of invariance
under arbitrary superposed rigid body motions are violated. Recently, however, Casey and
Naghdi [7] have introduced a method by the use of which the theory may be put into
properly invariant form. The method in [7] consists of removing from every motion of a
body the translation and rotation at anyone particle while maintaining at all particles the
finite strain of the original motions. When the motions derived in this manner are used
instead of the original ones in constructing an approximate theory, the results are properly
invariant under arbitrary finite superposed rigid motions.

Leaving aside the problem of invariance for the moment, we note that, compared to
the theory of small deformations superposed on a large deformation of an elastic material,
the corresponding theory for an elastic-plastic material involves additional difficulties.
These difficulties are mainly due to the possible occurrence of changes in the condition of
plastic loading as a result of the superposed deformation. In the context of the theory of
Green and Naghdi [1,2], Shack [8] constructed a special theory of small deformations
superposed on a large deformation. In particular. Shack examined how elastic-plastic
materials respond when at some instant to the velocity field associated with any given
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three-dimensional elastic-plastic motion is perturbed in such a manner that for a
sufficiently short period following to no unloading of the material occurs. The possibility
of this type of phenomenon was first recognized by Shanley [9] in his analysis of the
bending of a uniformly compressed column, and was further studied in the case of plane
strain perturbations on dominating uniform compressive plastic flows by Goodier [10] and
by Ramsey [II).

We recall that the traditional formulation of plasticity theory employs yield surfaces
in stress space, together with loading criteria which involve the time rate of stress. Such
criteria are known to lead to reliable results in the work-hardening range of elastic~plastic

materials. For these reasons, a stress (as well as temperature) space formulation of the
nonlinear theory was adopted in [1,2] and hence in [8]. However, the loading criteria of
the stress space formulation of plasticity are not valid in a region such as that
corresponding to the neighborhood of the maximum point, and the falling portion, of the
engineering stress versus engineering strain curve for uniaxial tension (i.e. in the vicinity
of ultimate strength, and during necking, of the material). This was observed by Naghdi
and Trapp [12], who also proposed an alternative strain space formulation of plasticityt
which is free from the shortcomings of the stress space formulation. Furthermore, the
strain space formulation was shown in [12) to have the additional advantage that the
loading criteria for perfectly plastic materials are the same as for work-hardening
materials, whereas in the stress space formulation the loading criteria for these two classes
of materials are different and a separate treatment is required for perfectly plastic
materials. More recently, Casey and Naghdi.[14] have shown that if the loading criteria
of the strain space formulation are adopted as primary, then the induced behavior in stress
space can be used to define in a natural way three distinct types of strain-hardening
response, namely hardening, softening and perfectly plastic behavior. In the context of the
development of [14), it is evident that the usual stress space formulation includes only
hardening behavior and is incapable of treating softening and perfectly plastic behavior.

The strain space formulation [12] was elaborated upon further in [15), which also
contains a discussion of a physically plausible assumption originally introduced in a strain
space setting by Naghdi and Trapp [16]. This assumption [16], which is concerned with
nonnegativity of work in a closed cycle of homogeneous deformation, implies certain
restrictions on the general constitutive equations of elastic-plastic materials and was
further examined in [17].

In the context of the purely mechanical theory developed in [12, 14, 16], and applying
the scheme of [7], we introduce in this paper a properly invariant infinitesimal theory of
motions superposed on any given motion of an elastic-plastic body. This theory includes
as a special case an invariant infinitesimal theory of elastic-plastic materials. Also, upon
specialization to an elastic material, it reduces to the theory of small deformations
superposed on a large deformation presented in [7]. If we consider the isothermal case of
Shack's thermodynamical treatment [8] of the problem we find that the present devel
opment differs from his in the following ways:

(i) Firstly, we allow the given motion to involve all forms of elastic-plastic deformation
including both loading and unloading; and, furthermore, we allow these conditions to
change as a result of the superposed motion. In contrast, adopting the idea of Shanley,
Shack restricts his attention to only dominating plastic flows.

(ii) Secondly, we utilize a strain space rather than stress space formulation of plasticity.
(iii) Thirdly, in our development of an infinitesimal theory of motions superposed on

a given motion, we consider two independent motions II and 21. of an elastic-plastic
material, II being identified with the given motion. If we were to neglect the question of
invariance, we would then construct our approximate theory by letting the gradient of the
displacement field of 21. relative to 11. approach zero at each instant of time, assuming in
addition that the time derivative of this gradient, as well as other quantities associated with
the elastic-plastic properties of the material, were small. This corresponds to the practical

tThe development in [121 is carried out within a purely mechanical framework which can readily be interpreted
in terms of the isothermal case of the thermodynamical theory [I, 2]. The corresponding thermodynamical theory
is discussed in [13].
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situation in which (apart from an infinitesimal rigid motion) the two motions 11 and 21

differ during their entire history only by displacements and velocities of 0(£). In contrast,
Shack considers the given motion to undergo at some time 10 a perturbation in its velocity
with no change in position. He confines his analysis to a sufficiently short interval following
to during which the given m.otion changes at most by terms of 0(£ 2) from its current values
in the unperturbeO state. We may obtain Shack's special perturbations by considering our
21 to coincide with 11 up to and including time to and comparing our results to his as t -+ to
from above.

(iv) Fourthly and lastly, our theory is properly invariant under arbitrary finite rigid
motions superposed on either 11 or 21 or both.

Before closing this section, we outline the contents of the remainder of the paper.
Section 2 contains the basic field equations of the purely mechanical theory of a finitely
deforming body. Again in the context of the purely mechanical theory, in Section 3 we
summarize the constitutive theory of an elastic-plastic material of the rate-type. In Section
4 we utilize the scheme proposed by Casey and Naghdi [7] as a means of constructing
invariant infinitesimal theories. Finally, in Section 5 the equations governing small motions
superposed on an arbitrary known motion of an elastic-plastic material are derived.

2. GENERAL BACKGROUND. PRELIMINARIES AND NOTATION

Consider a body ~ which, in a fixed reference configuration 0" occupies a region 09t,
with boundary ao~, in a three-dimensional Euclidean space <ff3. Choosing a fixed origin
(!) in iff3, we identify each particle X of !14 by the position vector X of the place it occupies
in 09t. A motion of!14 is a mapping. 1 which assigns a position vector x = I(X, I) to each
particle X at each instant 1 of time ( - if) < 1 < oc). In what follows, we need to consider
three separate motions of the body; and, in line with the notation of [7], introduce

aX = .X(X, 1), (2.1)

where rx. takes on values 0, 1,2 and oX =x. The motion oX =X=ol(X,/) in which X
remains at X for all 1is called the identity mOlion. We note that oX = o,,(X) and o~ = o"(~)'

In our analysis of motions superposed on a given motion, IX will represent the given motion
and 21 a motion that is close to IX in a sense to be made precise. The image of o~ in the
motion ,1 will be denoted by .~ = .X(o~, 1). We assume that at each fixed t, the mapping
of ~o into ~ by (2.1) possesses a smooth inverse denoted by .X -I. Under these
assumptions, for each a, ft is also a region with boundary a.~ = ,1(oo9t, t). The current
configuration of!14 at each fixed t in the motion ,x is the mapping ," of!14 into ~3 given
by." = .xoo", where ° signifies the composition of mappings. For any subset (or part)
Ysf!J of the body, we write of/ =o,,(Y), .f/ = .x(ofl/, t) and a.f/ = ,1(oof/, t), where oof/
is the boundary of the region ofl/ and o.f/ that of .f/.

Before continuing with the kinematics, we mention some mathematical terminology
that will be needed in w/:lat follows. Any linear mapping from V3

, the three-dimensional
translation vector space associated with the point space <ff3, into V 3 will be called a second
order tensor. The trace and determinant functions are denoted respectively by tr and det.
The transpose of a second order tensor A will be denoted by A T, while the inverse of A
if it exists will be denoted by A -I. The usual inner product on V 3 is written a' b for any
two vectors a, bE V3 and the (induced) norm, or magnitude of a is given by Iia II =,;;;:;.
The set of second order tensors can be provided with an inn:; product A . B = tr(ATB)
for any two second order tensors A and B, and a norm IIA II = A' A. The tensor product
a ® b of any two vectors a, bE V 3 is the second order tensor defined by (4 ® b)1I = b • II 4

for every vector II. We recall the formulae tr(a ® b) = 4' b, (4 ® b)T = b ® 4 and
(4 ® b)(c ® d) = b •C 4 ® d = (4 ® c)(b ® d) which hold for all vectors 4, b, c, din V 3•

The convention of summation over a repeated index will be employed, except for a
repeated index which appears to the left of a central character.

In order to express certain expressions in component form, it is convenient to employ
two fixed right-handed orthonormal bases reA} and rei} in V3, the former basis being used
for vector fields defined on the region O'tJIl and the latter for vector fields defined on other
regions. Thus, for example, we write X = XAeA and aX = .x,e; (ri = 1,2). Furthermore, a
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second order tensor A may be represented by Ail!i@ej , AiMei@c,\{ or AMNeU@eN as
appropriate, where Au = Ci . Ae; = A • (ei @ e), etc. The second order identity tensor is
denoted by I and may be represented by Ci @ ei , etc. Any linear mapping from the set of
second order tensors into itself is a fourth order tensor. In particular, the tensor product
a @ b @ c @ d of any four vectors a, b, c, dE V3 is a fourth order tensor. It is useful to
define an inner product of the fourth order tensor a @ b @ c @ d and the second
order tensor u @ v, u, v E V" by (a @ b @ c @ d) Iu @ v] = c • u d' t' a @ h, which
yields a second order tensor. Any fourth order tensor stI may be represented as
.'7/ = .otuk/e, @ c, @ ek @ e, =stIKLMNeK @ eL @ eM @ eN =.91 ijnei @ ej @ eK@ eL, etc. where,
for example, stlijkl = ei . stI[ek @ eM} = (ei @ c) . stI{ek @ e,j. The transpose SiT of a fourth
order tensor stl is that unique fourth order tensor with the property that B' stlIA] =
A • stlT{B] for all second order tensors A, B. Clearly, stlT = (stl ijklei @ e, @ ek@ e/)T =
.Wklijei @ ei @ ek @ e/.

We also need to consider third order tensors, which may be viewed as linear mappings
from the set of second order tensors into V 3. Let a, h, c, u, V E V ' and define a
product (a @ b @ c) {u @ v] = b . U c • va. Then a @ b @ C is a third order tensor.
We also introduce here the products (a@b@c) (u@v)=c'ua@h®v and
(a @ b @ c)u = c· ua @ h.

Having disposed of the foregoing notational preliminaries, we return to further
consideration of kinematics. The deformation gradient ,E, associated with the motion ;x.
relative to X is defined by

ax
,F = (lX(X' t), ,J = det(aF) > O.

Being invertible, ,F possesses a unique polar decomposition in the form

,F ,R,U.

(2.2)

(2.3)

where the (local) rotation ,R is a proper orthogonal second order tensor and the right
stretch ,U is a symmetric positive-definite second order tensor. Also, the right
Cauchy-Green measure of deformation ,C and the Lagrangian finite strain tensor ,E are
given by

(2.4)

The relative displacement field associated with the motion ,X is the mapping xX - 01. with
the values

,u=Cx ~o1.)(X./)=xX-X

and its gradient relative to X, namely

G = ceX - 01. )(X I) = F - I
:x eX ' ':l ,

(2.5)

(2.6)

is called the displacement gradient.
A motion xl. + of f!4 is said to differ from xl. by a superposed rigid motion if and only

if

,I. +(X, xl t) = ,Q(l),X(X, t) + ,a(l), ,1 + = I +,a (2.7)

for some proper orthogonal second order tensor-valued function ,Q(I) of time, some
vector-valued function au(t) of time, and some real constant ,a. The configuration of f:!8,
at time,t ,in the motion a1. + is ," + = ,I. +°0", The class of rigid motions of f!4 consists
of those motions 01 + which differ from the identity motion 01 by a rigid motion, being
given by (2.7) with 1:1. = o.

It was observed in [7] that the statement "differs by a rigid motion" is an equivalence
relation on the set ..,{{ of all motions of f!4. This allows ..,{{ to be partitioned into disjoint
subsets (equivalooce classes) each of which comprises all motions of f!4 and only those,
which differ from one another by a rigid motion. Thus, each equivalence class comprises
those motions of f!4 which are regarded as mechanically indistinguishable. The equivalence
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class which contains all motions that differ from a given motion X by a rigid motion is
denoted by K(X). For example, the equivalence class K(oX) contains the entire set of rigid
motions of fJi. We also recall from [7] that an equivalence class is determined by anyone
of its members. If, instead of a motion X, we begin with a motion 0 and place all the
members of J{ that are equivalent to 0 in a class K(O), we find that K(O) = K(X). Any
member of an equivalence class is called a representative of the class.

We may regard (2.7) as defining a function w taking J{ into JIt such that for fixed
values of aQ,aa and ,a in (2.7)

(2.8)

From the deformation gradient aF + = (o"X + /ax) (X, "t +) of .X" in (2.7)( and (2.2), we
readily obtain

(2.9)

Then, using xE + to define, as in (2.3) and (2.4), the tensors xR +, .U + , aC + and aE +, it
follows at once that

(2.10)

The relative displacement field associated with xl + is xU + = (al + - oX leX, at +) and its
gradient is "G + =,F + - I. Hence, in view of (2.9)( and (2.6)

xG + = "Q(t)aG + ,Q(t) -I, (2.1l)

so that aG + is neither unaltered, nor unaltered apart from orientationt under all
superposed rigid body motions of fJi.

Using a superposed dot to signify material time differentiation, the particle velocity in
the motion al is given by

"v =,i o;~(X, t)

and the particle acceleration is ;0. We recall the formulae

a£ = aFT,D,E, ,D =~"L + ,L 1), aL = ,£,£ - I.

(2.12)

(2.13)

aL is the velocity gradient; its symmetric part ,D is the rate of deformation tensor and ,£
is the rate of strain tensor.

It follows from (2. lOb, (2.7h, (2.13)( and (2.9)1 that

(2.14)

Let "p be the mass density in the configuration .K, ab the body force field per unit mass
in the configuration .K, an the outward unit normal to the surface o,rP, ,I the surface force
vector acting on aarP, and measured per unit area of oaf!)', and .T the associated Cauchy
stress tensor. Then, in any motion .1, from conservation laws for mass, linear and angular
momentum follow the results

oP == aPal ,

at = aT"", aTT = ",T,

.div aT + ttPiJ = ,Pai.

tSee [18J for the motivation for, and the precise meaning of this terminology.

(2.15)



1120 1 CASEY and P. M, NAGHD'

In (2.15), .div is the (right) divergence operator with respect to .x, having a component
representation

In the motion ;1. the unit normal on is carried into,n with

(2.16)

,n
(,F - l)l;)n

II(,F -1)Ton II'
,FT,n

on =. T •
I!,F ,nil

(2.17)

Denoting the mass density in the configuration ,K + by .P + , applying (2.15), to the motion
;1. + as well as to ;1. and invoking (2.9)2' we obtain

oP = ,P .; ,./ +, ,p = ,po (2.18)

It follows from (2.18) and (2.9), that under the transformations (2.7)"n is carried into,n +,

the outward unit normal to a,2J' + , with

,n + = ,Q(t ),n. (2.19)

We adopt the usual assumption that the stress vector .t + for the motion ;1. + is related
to .1 by

,1 + =,Q(t).1 (2.20)

and it then follows with the aid of (2.15h and (2.19) that the Cauchy stress tensor, T +

in the motion .x + is related to ,T' by

The balance of linear momentum in the motion,l + is written as

,div + , T + + ,P. ~. ,b + =.P + ,v + ,

where

(2.21 )

(2.22)

(2.23)

We note that in view of (2.7)" (2.16), (2.23 )" (2.18}z, (2.15)4 and (2.22)

(2.24)

It is convenient for the treatment of elastic-plastic bodiest to introduce nonsymmetric
and symmetric Piola-Kirchhoff stress tensors denoted by .p and .S, respectively, and
related to the Cauchy stress tensor aT by

(2.25)

tIn [1,21 both material and spatial descriptions of the basic field equations for elastic-plastic bodies can be
found. Although in later sections of the present paper we shall mainly be using a material description, we have
included the foregoing spatial description of the conservation laws and related equations in order to facilitate
:::. comparison of our results, upon reduction to the elastic case, with those in [7J.
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The stress vector aP given by

(2.26)

represents the surface force in the motion.l but measured per unit area of the surface auf!/'
in the reference configuration oK. Denoting by aP + and as + the values taken on by aP and
.S in the motion .l +, it follows from (2.21), (2.9)2 and (2.25) that

and hence

.P+ = .Q(t).p, .S+ =.S

.S+ = .S.

(2.27)

(2.28)

Thus, S has the important property that neither itself nor its material time derivative is
altered under superposed rigid body motions represented by the transformations (2.7).

The balance of linear momentum in the motion xl may be written in terms of aP in
the form

Div xP + op.b = oP.v, (2.29)

where Div is the (right) divergence operator with respect to X, having a component
representation

It follows at once from (2.15)1.4 and (2.29) that

.J .div J = DivaP.

Furthermore, in view of (2.27)

Div.P + = .Q(t) Div .P.

(2.30)

(2.31 )

(2.32)

3. THE ELASTIC-PLASTIC SOLID

In this section we summarize the main ingredients of a purely mechanical rate-type
theory of finitely deforming elastic-plastic solids. Our treatment is based on the alternative
strain space formulation[12, 16] of the theory of plasticity originally proposed by Green
and Naghdi [I, 2].

In addition to the kinematical and kinetical quantities introduced in Section 2, we
assume the existence of a symmetrict second order tensor-valued function ~E = ~E(X, t),
called the plastic strain at (X, t) in the motion .l, and 'a scalar-valued function.K = aK(X, t)
called a measure of work-hardening.

For each a and at each X and t the values of strain .E(X, t), plastic strain ~E(X, t) and
work-hardening aK(X, t) in the motion .1 may be regarded as a point, which we denote
by Cf/ = (E, PE, K), in a thirteen-dimensional Euclidean space:!Z formed from the Cartesian
product Sym x Sym x Real Line where Sym stands for the space of symmetric second
order tensors.

We assume that both ~E and .K are unaltered under superposed rigid body motions
(2.7). Thus, let ~E + and .K + be the plastic strain and measure of work-hardening
associated with the motion al +. Employing the notation .Cf/ = (aE, ~E, aK),

tThe symmetry of~ is shown in [16] to follow from a work assumption which we will be adopting below.
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//1 + = (.E + ,~E + ,.K +) and recalling (2.\ 0) and (2.7)2 we may then write

//1 + = 14/, (3.1)

We suppose that the stress ,S in the motion "l is given by the constitutive equation

We further assume that S satisfies the symmetry conditiont

o.

(3.2)

(3.3)

In view of (3.1) and (3.4), the stress as + in the motion ;1, + is equal to ,S and the invariance
condition (2.27h is satisfied.

We also assume the existence of a continuously differentiable scalar-valued yield or
loading function g on :!l'. Fixed values of PE and K give a six-dimensional subspace of :!l',
called the strain space at (PE, K). We assume that for fixed values of PE and K the equation

(3.4)

represents a smooth orientable closed hypersurface 08 of dimension five enclosing a region
G of the strain space at (PE, K). The work-hardening parameter is chosen so that g('1I) < 0
for all points in the interior of G. The hypersurface a'S is called the yield sUI/ace at (PE, K),
while the interior of G is called the elastic region at (PE, K). As different values of (PE, K)
are taken on by the particle X as a result of the motion of the elastic-plastic body, the
surface aG sweeps out a hypersurface of dimension twelve in :!l', aU points of which satisfy
g = O. We denote this hypersurface by 1:. See Fig. 1.

If corresponding to a motion ,x, a point /1/ satisfies (3.4), then since /l/ is unaltered
under the transformations (2.7), equation (3.4) will still be satisfied in the motion ,X +.

Consequently, the notion of a yield surface and also that of an elastic region are invariant
notions.

Corresponding to a motion ,x, there will be associated with each particle X of the
elastic-plastic body a continuous oriented curve, or trajectory, ,C in :!l' consisting of

Fig. 1. A schematic diagram illustrating how () $, the yield surface in strain space at (PE, K), sweeps
out the hypersurface L in the 13-dimensional space of :r = (E, PE, K). All planes perpendicular to
the (P E, K) axis represent strain space and the strain space at zero value of (P E, 1<) is explicitly

denoted by E. Also shown is a typical trajectory C in :!t.

tThis is equivalent to the condition that S be derivable from a potential, as indeed is the case in the general
thermodynamical theory (see Section 4 of [2]). The purely mechanical theory may be regarded as corresponding
to the isothermal case of the general theory. (The existence of a potential can also be demonstrated by an
argument based on the work postulate put forward by Naghdi and Trapp{l6] and introduced later in this
section.)
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points ,'fl(X, f) == (,E(X, f), ~E(X, f), ,,,(X, t» and parameterized by time t. These tra
jectories are restricted to lie initially in the elastic region or on its boundary as in the
strain space at the initial value of (~E, ,K), i.e.

(3.5)

initially on .c.
Constitutive equations for ~£ and .K may be written by introducing an undetermined

scalar-valued function ),('ft) on ::r together with symmetric second order tensor-valued
constitutive functions p(l1II) and ~(Gft) such that

and

(3.6)

where

o
o

~£ =:
o
A(,I1II)aip(.I1II)

if g(.'fl) < 0

if g(,Gft) =: 0 and i < 0

if g(,i~) == 0 and i = 0

if g(.Gft) = 0 and i > 0

(a)

(b)

(c)

(d)

(3.7)

(3.8)

and where the notation og liJEMN stands for the symmetric form ~(og /OEMN + og /OENM). We
observe that ,E =0 for (J. =: 0 implies that .i == 0 for (J. = O. Thus 6£ = 0, that is, the plastic
strain must always be time-independent in the identity motion; it retains its initial value
at each particle of the body. Furthermore, in view of (3.6), ,K =0 for (J. =: O.

The conditions involving g and g in (3.7) are the loading criteria of the strain space
formulation of plasticity. The four cases (a)-(d) in p.7) are said to represent an elastic
state, unloading from an elastic-plastic state, neutral loading from an elastic-plastic state
and loading from an elastic-plastic state, respectively.

Equations (3.6) and (3.7) are called constitutive equations of the rate-type, since they
involve time rates of .E, ~E and .K. However, both ~£ and ,K as given by (3.7) and (3.6)
are independent of the time scale used to compute these rates since the equations are linear
and hence homogeI!.eous of degree one in the rates. Furthermore, neither the yield function
g, nor the function Sin (3.2), depend on rates. For these reasons the present theory is called
rate-independent. It is intended to apply to inviscid elastic-plastic materials in which time
effects such as creep and relaxation may be ignored.

The conditions involving g and g on the r.h.s. of (3.7) are invariant statements. This
may be seen at once from (3.1)" (2.14)2 and the observation that

q+ =.!L(dft+). £+ = q
lib aE+ • • rIb'

(3.9)

Thus, not only will the same trajectory in ::r and the same yield surface be associated with
the motions .x + and .x, but in addition an elastic state, unloading, neutral loading and
loading, respectively, will occur at (X,.t +) if and only if the same state occurs at (X, t).
We also note that in view of (3.1)\ and (3.9) the constitutive equations (3.6) and (3.7) are
properly invariant statements, satisfying the invariance requirement (3.1)2'

We assume that the coefficient of ai in (3.7d) is nonzero on the yield surface. Then,

55 Vol. 19. No. 12--D
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without loss of generality we may writet

(3.10)

Next, we stipulate that loading from an elastic-plastic state must lead to an
elastic-plastic statet. Therefore in any motion ,x,

(3.11)

whenever loading occurs. With the use of (3.6), (3.7d), (3.8) and (3.10), we deduce from
(3.11) that

(3.12)

at all points of as through which loading can occur. We regard (3.12) as an equation for
the determination of X

We now briefly discuss a geometrical interpretation of the conditions (3.7). For an
illustration see Fig. 1. It follows from (3.4), (3.6) and (3.7a) that in an elastic state the
trajectory ,C in :!l' lies in the interior of the region S of the strain space at (~E, K),
and that,C must remain in the strain space at (~E, K) until the yield surface as at (~E, .K)
is reached. Similarly, by (3.4), (3.6), (3.7b) and (3.8), during unloading from an
elastic-plastic state the trajectory ,C intersects as, the components of its tangent vector
,itt = (.E, ~E, oK) perpendicular to the strain space at (~E, oK) being zero, while the inner
product of,£ and the outward unit normal agjaE</It) (at g = 0) to as is negative.
Therefore"C remains in the strain space at CE, oK) and is moving into the interior of <C.
From the expression for "g in (3.11), it is clear that ;g is decreasing in value during
unloading. As regards neutral loading from an elastic-plastic state, it follows from (3.4),
(3.6), (3.7c), (3.8) and (3.11) that.C intersects as at (~E, .K); the components of its tangent
perpendicular to the strain space at (~E, aK) are zero; its component at is perpendicular
to the normal ag jaE; and .g is stationary: Therefore, aC continutes to move in the yield
surface as at (~E, .K). It is only during loading from an elastic-plastic state that the
trajectory .C can leave the strain space at (~E, .K). lnd~ed it follows from (3.7d), (3.8) and
(3.11) that during loading aC intersects ail and locally moves outwardly with it in the sense
that the inner product of .£ and ag jaE is positive. The components (~£, ,x:) of the tangent
perpendicular to the strain space at (~E, aK) are given by (3.6) and (3.7d). During loading
the trajectory .C remains in the hypersurface I:: swept out by atl as .E, ~E and aK change
with time. Finally, recalling the consistency condition as well as (3.7a--<:), it is clear that
the restriction (3.5) holds for all time and that the trajectory ,C remains within the region
enclosed by I:: or lies on I::.

The mechanical theory of elastic-plastic materials under consideration involves a set
of five functions consisting of the motion ,I, the stress tensor ,S, the variables ~E and .K,
and the body force ab. If ~E and ,K are given initial values at time to, the motion.x can
be used to determine ,E, and assuming sufficient smoothness, the differential equations (3.6)
and (3.7) can be solved for ~E and ,K in an interval containing to. The new position of
ot&' can be found from (3.4), the stress tensor .S from (3.2) and the Cauchy stress from
(2.25). The field equation (2.15)4 is assumed to hold for any choice of ,x and may be used
to calculate ab, while aP may be found using (2.15) together with a prescribed reference
mass density.

tWe are assuming that for given values of PE and K and a given continuous function p, a loading function
may be chosen independently of p such that the associated yield surface as'is the boundary of an arbitrarily
small neighborhood of the strain space at (!'E, K). If there is a region of the strain-space at (PE, K) which ac cannot
traverse, then p and A are unrestricted in this region. For particular materials this may be acceptable. p and A.
must, however, satisfy (3.10) at aU points that a<t .may traverse. For a given loading function g, the hypersurface
g 0 will be the fixed twelve-dimensional hypersurface k in the space !!.t. It is actually sufficient that A and p
be defined only on k.

tThis is the "consistency" condition in the context of the present strain space formulation of plasticity theory.
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We now turn to the work assumption )ntroduced by Naghdi and Trapp in [16] and
further examined by them in [17]. We recall that a motion.l is said to ~ a homogeneous
motion if and only if its defonnation gradient, given by (2.2)" is independent of X, i.e.
(o,FjaX) = O. The strain tensor .E in (2.4)2 will then also be independent of X. If the body
f!I is homogeneous in its reference configuration oK, that is, if the mass density oP and all
of the constitutive functions do not depend explicitly on X, then, in any homogeneous
motion of (fI, the stress .S, the plastic strain ~E and work-hardening parameter .K will also
be independent of X. We say that a motion .1. is a homogeneous cycle in a closed time
interval [f,,12], I, < 12, if it is homogeneous and if for each particle of the body fJI the
position ,x and the strain tensor .E assume the same values at I, and 12, We designate such
a smooth homogeneous cycle by.c[t.. 12], The work assumption of Naghdi and Trapp then
is: The work done on the elastic-plastic body fJI by surface tractions and body forces in
any smooth homogeneous cycle .c[t" t2] is nonnegative. We emphasize that such a cycle
always exists, being maintained by a suitable choice of the body force fieldt. It follows
from the work assumption of Naghdi and Trapp thatt[l6].

(
oS as) ag
aPE (OU) + OK (OU)®~(OlI) [p(OU)] = - y(OlI) oE (OU)

or, in indicial notation,

(3.13a)

(3.13b)

evaluated on aG, the yield surface at (PE, K), where the scalar function y satisfies§

y(OU) ~ 0 (3.14)

on !Z. We emphasize that (3.13) holds even for a motion that :s not homogeneous.~We
note that (3.13) is an invariant statement.

4. THE MOTION ,z* AND THE INVARIANCE PROPERTIES ASSOCIATED WITH IT

In this section we employ a method introduced rc<cently by Casey and Naghdi [7] as
a means of constructing properly invariant infinitesimal theories. We recall that from
among the particles of fJI, one, denoted by Y and called a pivot is chosen. Then, by
(2.1)-(2.3), we have

a.l
rJ' = ,1.(Y, t), ax(Y' t) = .R(Y, t).U(Y, I) (4.1)

where y=oY=olC(Y). For any motion.l we can construct a motion .1*=1t(.1.) by
removing from .1. the rotation and translation at the pivot Y, while maintaining at all
particles of fJI the stretch (and hence finite strain) experienced in the motion .1. The motion
,1. * is given by [7]

.x* = .1*(X, 1*) = .RT(y, t){.l(X, I) - .1.(Y, I)} + Y, 1* = 1- c (4.2)

where II c is a real constant. The configuration of fJI at time t * in the motion (1.1. * is the
mapping 2"* given by .,,* = .1*00", The image of ofJl in the motion .1* is denoted by
,fYI* =.1 *(ofYI, 1*) and its boundary is denoted by o.fJl*. Clearly, in the case of the identity

tIn general, a cycle ,4t l , t:zl will not correspond to a cyclic elastic-plastic process, that is, a process in which
;i'(t) takes on the same values at times t, and t1.

tEquation (3.13) is equivalent to (5.4) of [16]. See [14] for a discussion of this point.
§See the first footnote on p. 1124.
'l]For a discussion, see ([16), p. 40) or ({17], p. 63).
IIWith a slight increase in generality, we could, as in [7), use a different t* for each ,z*.
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motion, (4.2) gives oX* = X, so that ol * = ol.and 0" * = 0'" We note that (4.2) is of the form
(2.7) and that ,I * is therefore a member of the class containing all the motions .l + .

Next we define "difference" motions I' and I *, by the relations

(4.3)

so that

(4.4)

We say that the "superposition" of the motion I' on II produces the motion 21. Similarly,
21 * differs from II * by a "superposed" or "difference" motion I *'.

Relative to the reference configuration 0'" the deformation gradient, displacement and
displacement gradient of the motions xl * are given, as in (2.2), (2.5) and (2.6), by

(J I *
f* = ~X (X. f). xU * = (,l* - ol)(X, t*) = xX* - X, xG* = .F* -I. (4.5)

(,

Of course, of* = J, oU* == 0 and oG* = O. Likewise, as in (2.4), we define Cauchy-Green
stretch tensors xC* and strain tensors xE* by

(4.6)

For (j = 0, oC* = J, oE* = O.
It follows from (4.5)1' (4.2), (2.3), (2.2h and the proper orthogonality of .R that

,F* = xRT( y, t)xF, ,1* = deteF*) = ,1 > 0.

In view of (4.7h, at each f* the mappings .F* and .Z* are all invertible.
An application of the chain rule of differentiation to (4.3)1 yields

while. similarly, it follows from (4.3)2 that

a *'
F*'=--L...-(x* f*)= F*(.F*)-I

;">. * I' 2, .('IX

Clearly, F' and F*' are both invertible. It follows from (4.n, (4.8) and (4.9) that

(47)

(4.8)

(4.9)

(4.10)

In view of the invertibility of f*. we may apply the polar decomposition theorem to obtain

xF* = .R*,U*, (4.11 )

with .R* proper orthogonal and .U* symmetric positive definite. It follows from (4.6),
(4.7), (4.11), (2.3), (2.4) and (4.2h that

xC * = (,U*)2 = .C. .U* = .U, ,E* = .E,

xR * = .RT(y, t).R,

r* = a.c* = J.C = r E'* E'
xl.. at * at ,L,. =.,

(4.12)
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When X = Y, from (4.2) we obtain

:xY*=al*(Y,t*)= Y, (4.13)

so that the particle Y retains its reference position Y in the configuration :x"*. Then, (4.2)\
may be rewritten as

aleX, t) - :x1(Y, t) = :xR(Y, t)(ax* - ,y*). (4.14)

Thus, the configuration a" is related to a" * by a superposed rigid motion whose
deformation gradient relative to :x"* is aR(Y, t).

Again, setting X = Yin (4.11) and (4.12h.4 leads to the equations

:xR*(Y, t*) = I, aF*(Y, t*) = aU(Y, t), (4.15)

so that the particle Y always experiences pure stretch in the motion :xl *.
Let ~E* and :xK* be the plastic strain and measure of work-hardening associated with

the motion :xl *. We employ the notation :xIJI/* = (:xE*, ~E*, aK *). Since the motions :xl * and
:xl are related through a superposed rigid body motion it follows from (3.1) that

:x1Jl/* =:x1Jl/

where (4.12)3 has also been recalled. Consequently

. a ,,\,
IJI/* = -( IJI/*) = "ll.:x ot* :x :x

(4.16)

(4.17)

In view of (4.12), and (4.16), it is clear that the same trajectory in !Z, consisting of
points

,J7t*(X, t*) = (:xE*(X, t*), ~E*(X, t*), :xK*(X, t*»

= (:xE(X, t), ~E(X, t), aK(X, t» = alJl/(X, t) (4.18)

is associated with the motions :xl* and al. (This is a special instance of the invariance
property of such a trajectory, alluded to following (3.9).) Furthermore, since the loading
conditions are invariant statements, an elastic state, unloading, neutral loading and
loading at (X, t *) in the motion :xl * correspond exactly to an elastic state, unloading,
neutral loading and loading at (X, t) in the motion :xl, and the same yield surface will be
associated with :xl * and :xl (i.e. o:xL* = oaL). For later convenience, we will state these
conditions explicitly.

First, we note that it follows from (4.12)3.6' (4.16) and (3.18) that

u* = og ( IJI/*)' E* = u
:xo oE* a :x :XO'

(4.19)

This is, of course, a special case of the result (3.9). We may use (4.12)3' (4.16), (4.17), (4.19),
(3.7) and (3.6) to write the loading conditions in the following form:

0 if g(,IJI/*) < 0 (a)

~E* =~E =
0 if g(:xIJl/*) = 0 and :xi* < 0 (b)

0 if g(alJl/*) = 0 and :xi * = 0 (c) (4.20)

A. (aIJI/*).,g *p (,IJI/*) if g(:xIJl/*) = 0 and .,g* > 0 (d)
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lOin cases (4.20a,b,c)

,K * = )" (a'FI*).,g *<€ (/It*). p(/lt*) in case (4.20d).

(a)

(b)

(4.21)

We note that if the consistency condition is invoked for loading in the motion al *, again
(3.12) results.

Let an * be the outward unit normal vector to the surface o/~* = ,I *(0021', t *) and let .t*
and. T* be the corresponding Cauchy stress vector and stress tensor, respectively. Then

(4.22)

Since .l * is related to ,I by a superposed rigid motion whose deformation gradient
relative to position in the configuration ,K is ,R T

( Y, t), it follows from (2.19) that

(4.23)

while, in view of (2.20),

(4.24)

and, by (2.21)

(4.25)

The nonsymmetric and symmetric Piola-Kirchhoff stress tensors associated with the
motion ,l* are denoted by ,p* and ,S*, respectively. Then, as in (2.25),

,1*aT* = .P*(aF*f = ,F*,S*(,F*f. (4.26)

Similarly, the stress vector ,p* is given by

(4.27)

[t follows from (4.7), (4.8), (4.25), (4.26) and (2.25) that

,p* = ,R T( Y, t ).p, ,S* = ,S. (4.28)

These equations are, of course, special cases of (2.27). It follows from (4.28)! and (4.2h that

$* = o.S* = $
, ot * .'

(4.29)

a special case of (2.28).
From (4.27), (4.28) and (2.26) we obtain the equation

(4.30)

For an elastic-plastic material, .S* satisfies the relations

.S* = S(/lt*) = S(.Olt) = .S (4.31 )

(4.32),p*.J*=oP, ,p*=.P,

where (3.2) and (4.16) have been invoked. Denoting the mass density in the configuration
,K* by .p* we obtain

which are special cases of (2.18).
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Let .b * be the body force per unit mass in the configuration .K * and let

* a.I*(X *)
,v = at* ' t (4.33)

be the particle velocity in the motion .1 *. The local form of the balance oflinear momentum
in the motion .1 * is

.div* .T* + .p*.b* = .p*.iJ* (4.34)

where .div* is the divergence operator with respect to position in the configuration .K *
being defined in a manner paralleling (2.23k It is readily seen that

.div* .T* = .RT(y, t). div ,T,
(4.35)

which are special cases of (2.24).
As in (2.29) the balance of linear momentum in the motion .1* may be written in terms

of .p* with

Div ,p* + op.b* = oP.iJ*,
(4.36)

Div .p* = .RT(y, t) Div.P

where the second of (4.36) is a special case of (2.32) with .Q(t) = .RT(y, t).
We next introduce the displacement field of the configuration 2K * relative to 1K *, namely

so that

h* = 21* - 11*,

h*(X, t*) = 2X* - IX*,

(4.37)

(4.38)

For a fixed value of t*, h* in (4.37) can be expressed as a different function of IX*, t*
in the form

h*(X, t) = (h*otI*) -l)tx *, t *)

= bI*O(II*)-1 - II*O(II*)-I}(IX*, t*) (4.39)

where (4.37) has been used. Further, at each time t* a function h may be defined by

(4.40)

and after recalling (4.3h, from (4.38) and (4.39) it follows

(4.41)
-

where 01 is the identify mapping on the region 19t*. We note that in view of (4.21),

h(iY*, t*)=o.

The relative displacement gradient given by

ah
H =--(, x* t*)a *\1 ,IX

(4.42)

(4.43)
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may, with the aid of (4.41) and (4.9). be expressed as

(4.44)

the gradient of oX being the identity tensor. It is readily seen from (4.40), (4.43) and (4.44)
that

(4.45)

It follows from (2.17)1 and (4.8) that

Furthermore. as in (2.17)1'

«.F*) I)Ton
,n = II«,F*)- Ifon II

in the motion ,x *, and hence in view of (4.9)

* «F*') lf1n*

,11 = II«F*')-'f,n*ll'

(4.46)

(4.47)

(4.48)

The restriction (3.13) obtained from the work assumption of Naghdi and Trapp[16]
when written for the motion ,x* becomes

- -

(
as as )

aPE*Vlt*) + aK*(",J7/*)®~(/lt*) [pC1/*)] = (4.49)

It follows from (4.16) and (4.28)2 that (4.49) reduces exactly to (3.\3) so that no new
restriction is obtained by applying (3.13) to the motion ,X*.

Let us now apply the construction (4.2) to a motion _,x + which differs from ,1 by a
rigid motion and thus satisfies an equation of the form (2.7). As in (4.2), we construct a
motion eX +)* = n(.x +) through the relations

(4.50)

where the choice (4.50)2 is made for convenience. The configuration of ~ in the motion
(.X +)* is denoted by .K +* = (,X +)*OoK and the value (.X +)*(X, 1) is denoted by (,x +)*.

With the aid of (2.10)4' (2.n and (4.2), from (4.50) we obtain

(,x+)*=,x* (4.51 )

It is of interest to state the relations (4.50) and (4.51) in terms of the functions ()) and n
as follows:

(4.52)

Thus, when a rigid body motion is superposed upon a given motion ,x, resulting in a
motion ,x + given by (2.7), by applying ()) to .x + we arrive at a motion (,1 ~)* which is
equal to ;1.*.

The mapping n extracts from .fl, the set of all motions of f!l, a proper subset

,1- = {n(O)IOEAt} = n(A'1). (4.5:\)



Small defonnations superposed on large defonnaltons of an elastic-plastic material 1131

The notion of invariance under superposed rigid body motions implies that the physical
response of a body in the entire set of motions ..It is completely determined by its response
in the subset .;Vc..lt. •

The image of ~ in the motion (.1 +)* is denoted by .fJI+* = (.X +)*(~, t) and its
boundary is denoted by ojit+*. It follows from (4.52) that jit+* = .fJI*. ojitH = oaf1l*.

In subsequent developments we need to have available explicit relationships between
various kinematical quantities calculated from the motions .1 * and (.X +)*. With the
notations

F+* - o(.X +)*(X) +* - « +)* )(X)• - ax ' t,,.II -.1 - oX , t , (4.54)

along with relations paralleling (4.5)3' (4.6) and (4.11), it follows at once from (4.52) that

and

.U+*=.U*, ,C+*=.C*, .E+*=.E*,

,R +* = ,R*,

(4.55)

(4.56)

We note that in the notation of (4.54)1' .F +* denotes the gradient of the motion
(.X +)* = 7t(.1 +), while .FH = (.F*) + in keeping with (2.7)1 stands for the gradient of a
motion (,X*)+ =w(.X*) which differs from .X* by a superposed rigid body motion. The
significance of the results (4.55) lies in the fact that while motions which differ from each
other by a rigid motion, and thereby belong to the same equivalence class, in general have
different values of G, for example, these motions have ·the same values of G*.

It is worth making an observation here for the special case of rigid motions. It follows
directly from (2.7) and (4.2) that

(4.57)

so that the entire equivalence class of rigid motions is mapped into the identity motion
oX. Consequently, the values of F*, R*, C*, U*, E* and G* in any rigid motion coincide
with the values of these fields in the identity motion oX.

It follows from (4.52) and (3.1) that

(4.58)

where «6IJ +* = (.E +*, ~E +*, .K +*) denotes the value of at1IJ in the motion (.X +)*.
As was previously done for the motion .x * we may associate with the motion (.1. +)*

quantities .J +*, .P +*, .b +*, ;0 +*, an +*• •t +*, , T +*, aP +*. aP +*, .S +* and the operator
.div+*. Then, remembering (4.55), and the conservation of mass, it follows that

.J + * = aJ *, .P + * = .P *.

Also, with the help of (4.25), (2.21) and (2.10)4 we obtain

.T+ *= {.Q(t).R(Y, t)JT,Q(t).T.QT(t).Q(t).R(Y, t) = aT*.
Similarly

S5 Vol. 19. No. 12-0.

(4.59)

(4.60)

(4.61 )
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Next, as in (4.3)1 we introduce a "difference" motion

(4.62)

whose gradient with respect to IX + will be denoted by F +'. It follows from (4.62), (2.9)}
and (4.8) that

(4.63)

Similarly, as in (4.3)2 we introduce a "difference" motion

(4.64)

whose gradient with respect to Cx +)* is denoted by F H'. From (4.64), (4.52), (4.3)2 and
(4.10) we obtain

(4.65)

As in (4.37) a displacement field h + * may be defined by

so that

h H(X, t) = (2X +)* - Cx +)*.

It follows from (4.66), (4.67), (4.52), (4.37) and (4.38) that

Now

(4.66)

(4.67)

(4.68)

hH(X, t)= {h H o(ll H )-I}«lx:+)*, t)

= {(21 +)*0«,1 +)*) -, - (11 +)*0«,1 +)*) -} }«lX +)*, t *) (4.69)

where (4.67) has been used. Introducing the composite function

(4.70)

and recal1ing (4.64), from (4.67) and (4.69) we obtain

(4.71 )

where oX + denotes the identity mapping on the region l~ H = (,I + )*(~, t). Inspection
of (4.52), (4.68), (4.70) and (4.66) then leads to

(4.72)

Also in view of (4.52), oX + = ox. Keeping this in mind it is clear that (4.71) is consistent
with (4.72), (4.70), (4.68), (4.65), (4.40) and (4.41).

In view of (4.71), (4.72) and (4.43), the relative displacement gradient H+, given by

satisfies

H+ =H,

(4.73)

(4.74)
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and hence also

Ji+ = Ji. (4.75)

5. SMALL DEFORMATIONS SUPERPOSED ON A LARGE DEFORMATION

In this section we regard ,I as an arbitrary known motion of{j and 21 as a general motion
of fJI differing from II in such a way that the state of the elastic-plastic material undergoing
the motion 2I is close (in a sense to be made precise) to that of the same material undergoing
the motion II.

From II and 2I we construct the associated motions II *and 21 * in accordance with (4.2).
The relative displacement between the'configurations 2" * and ," * is then given by (4.37) and
its gradient relative to the configuration ," * is given by (4.43).

The motion II, and hence· also II*, may be inducing loading, neutral loading, unloading
or an elastic state in the ela::.tic-plastic material. The motion 21, and with it 21*, may
independently be inducing any of these states also. In order to establish a measure of
smallness we introduce the following nonnegative real functions:

(5.1)

£2 = £2(t*) = sup IIJi(IX*, t*)II,
Ix·el£i

£3= £)(t*) = sup II~E*(2x*,t*)-fE*(,x*,t*)11
lX·Et.4*. 2X*EZJt·

and

= sup II~E(2X, t) - fE(IX, t)il
IXEt9l.2XE291

£4=£it*)= sup 112K*(2X*,t*)-IK*(,X*,t*)
IX·ElfJI*.2X*EJiN*

= sup IbK(2X, t) - I~CX, nil
IXE t9l.2XE291

(5.2)

(5.3)

where aX * are given by (4.2) and where use has been made of (4.16); sup stands for the
supremum or least upper bound of a nonempty bounded set of real numbers. As our basic
measure of smallness we will employ the function

(5.4)

If Z is a tensor-valued functiont of the variables H, fE*, ~E*, lK *, 2K* and t* defined
at time t* in a neighborhood of H = 0, ~E* - ~E* = 0, 2K* - IK* = 0 and satisfying the
condition that there exists a nonnegative real constant K such that

IIZII < K£" as £ -+0,

then we write

Z = 0(£") as £-+0,

n being a nonnegative integer.
It follows from (4.44), (4.6), (5.1)" (5.4) and (5.5) that

2E * - ,E* = t(tF*Y(H + H T+ HTH)IF* = !l.E* + 0(£2) as £-+0

= 0(£) as £ -+0,

tZ may be a second order. first order (vector), or scalar valued function.

(5.5)

(5.6a)
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(5.6b)

Then, taking a material time derivative of both sides of (5.6a)1 and invoking (5.1), (5.4),
(5.5) and (5.6b), we obtain

2£* - 1£* = ~(J;*f(H + HI)lF* + ~(,F*)T(H + HI)J*

+ ~(,F*)T(Ii + IiI)IF* +~(IF*fHTHIF*

= AE* + 0(E 2
) as E->O

= O(t) as E ->0. (5.7)

We note in passing that Shack ([8] eqn 3.5) does not include the contribution due to the
first pair of terms on the r.h.s. of (5.7), in his calculation of strain-rate differences. If it
is assumed that H (but not Ii) is equal to zero at time t, Shack's equation is recovered.

Performing a polar decomposition on F*' in (4.9) results in

F*' = R*'U*' (5.8)

with R *' a proper orthogonal tensor, and U*' a symmetric positive definite tensor. Then
with the aid of (4.4), (5.1)" (5.4) and (5.5) it is readily shown that

(F*')-I -I = - H + 0(E 2
) = O(E),

U*' -I = ~(H + HI) + 0(E 2
) = O(E),

(U*')-I -I = - *(H + HI) + 0(E 2
) = O(E),

R*' -I = ~(H - HI) + 0(E 2
) = O(E),

(R*Y - I = - ~(8 - HI) + 0(E 2
) = OCt),

(a)

(b)

(c) (5.9)

(d)

(e)

as t. ->0.
Assuming sufficient smoothness, we expand g({W*J in a Taylor series about the point

1011* and invoke (5.6), (5.2), (5.3), (5.4) and (5.5) to obtain

(5. lOa)

where

Ag = og (11IJ*)'AE* +~( o7t*),(P2E* -PE*)+ og V7t*)(,/{* -IK *)
OE*I oPE*1 1 OK* .

Similarly,

where

= O(E) as t. ->0. (5.IOb)

(5.lla)

()

2 0' 0 2

A og = 0 g (11IJ*)[AE*] + 'g ( 11IJ*)[~E* - PE*] + ~ Vli*)(2K * - 1K*)
oE* oE*oE* 1 oE*oPE* 1 'OE*CK*

=O(E)as t.->O. (5.11b)
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From (4.19), (5.11) and (5.7) we obtain

where

iJg -' (iJg ),r =~ dIi*)' f!E* + f! - . t* = 0«(.) as (.-0." aE*'1 iJE* I .

(5.12a)

(5.12b)

In our analysis, we neglect tenns of 0«(.2) as (. -0. The difference between g(2d1i*) and
g(ldIi*), and the difference between d * and Ii * will then be given by the tenns of 0«(.) in
(5.10) and (5.12), respectively. Consequently, the change in loading conditions between the
two motions 11* and 21* (and hence also between II and 21) will at each time t be
determined by these terms ofO(f.). Thus, omitting terms of 0«(.2) in (5. lOa) and (5.12a),
we write

(5.13)

and

(5.14)

It follows from (3.5), (4.12»), (4.16) and (5.13) that

(5.15)

Since any of the four cases in (4.20) [or (3.7)] may be occurring in either 21 * (and 21)
or II * (and II), we have to consider sixteen distinct cases altogether. For convenience we
designate each of these by an ordered couple (CI , C2) with CI = E, U, Nor L correspond
ing, respectively, to an elastic state, unloading from an elastic-plastic state, neutral loading
from an elastic-plastic state and loading from an elastic-plastic state in the motion 11*
(and II), and C2= E, U, Nor L corresponding to these states in the motion 21* (and 21).
We shall examine each of the sixteen separate cases presently but first we will need to derive
approximations from the eqns (4.31) and (4.26) as well as some related fonnulae that will
be used later.

Expanding SU¥i*) about the point IdIi* and invoking (5.6), (5.2), (5.3), (5.4) and (5.5),
we obtain

where

Similarly

where

-

f!S* = iJa:*CdIi*)[f!E*] + iJ~:,<,dIi*)[~E* - fE*] + :1(~Vli*)(lK * - II( *)

= 0«(.) as (.-0.

(5.16a)

(5.16b)

(5.17a)

(5.17b)
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Also
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(5.l8a)

(5.l8b)

(
08 028 028 0"8

L\ OK* = OK*oE* (lqj*)[L\E*] + OK*oPE* (tqj*)gE* - fE*)+ O(K*//'71*)(2K* - ,K*)

= 0(£) as £ -+0.

Furthermore,

where

L\p = o~*VIi*)[L\E*] + a~;*(lqj*)[!2E* - ![E*] + o~*VIi*)(2K* - ,K *)

= O(d as £ -.0.

Similarly,

where

OA OA oj.
L\), = 8E*(,qj*)· L\E* + [JPE*Cqj*)· (~E* - fE*) + OK/1qj*)(2K* - IK *)

= 0(£) as £ -+0.

Also

where

oCC oCC OCC
L\CC = oE*Cqj*)[L\E*] + OPE*(,qj*)[~E* - fE*] + oK*V11*)(2K* - IK*)

=0(£) as f-+O.

Finally, we also need the relation

where

(5.19a)

(5.l9b)

(5.20a)

(5.20b)

(5.2Ia)

(5.2Ib)

(5.22a)

A( iJg ) _ iJ2g (qj*)[L\E*] iJ2g (qj*)[PE* -PE*]+ c
2
g (qj*)(' K* _ K*)

L..l 8PE* - oPE*8E* I + 0"E*8"E* I 2 I CPE*OK* 1 2 I

= 0(£) as £ -+0,

as well as the relation

(5.22b)

(5.23a)
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where

= O(£) as (-+0. (5.23b)

With the help of (5.19)-(5.23), it follows from (3.12), evaluated at ,'11* and 2'11*, that

tl(I'1I*)P(,'1I*)' {L\(a~;*) + a~*VIi*)ACfi + f{J (,'1I*)L\(a~*)}

+ {a~:*(''1I*) + a~*Vlt*YGVIi*)}' {tl(,'1I*)L\P

+ p(,'1I*)L\tl} = 0 + 0«(2) as (-+0,

which may also be written as

(5.24a)

p(,'ft') Ha~:').l+ a~'(''ft')I1'/1 + '/1<.'ft')I1(::.)Ha~:'(''ft·) +::.(,'ft.)'8<.'ft.)}
.L\p . 2 = 0 + 0«(2) as (-+0. (5.24b)

), (,'11*)

Suppose now that the motion 2Z* is inducing loading from an elastic-plastic state.
Then, by (4.20d), (4.21b), (5.13), (5.14), (5.19)-(5.21)

(5.25a)

and

~E* = J1.(2'11*)i*pU¥I*) = {A(,'1I*)(p(,'1I*) + L\p) + p(,'1I*)L\J1. hi* + J1.(,'1I*)p(,'1I*)e
(5.25b)

while

2,( = {J1.(I'1I*WGU¥I*) + L\Cfi)' p(,'1I*) + Cfi(,'11*)· (A, (1'1I*)L\p + P(I'1I*)L\A,)hi*
+ tlVfl*)'"C(I'1I*)' p(,'1I*)e, (5.25c)

where terms of 0«(2) as (-+0 have been omitted.
Equations (5.25) hold regardless of the condition of loading that is occurring in the

motion 11*. If, however, loading is being induced in the motion 11* as well as in the motion
21*, then from (5.25), (4.20d) and (4.21b) we obtain

(5.26a)
i * > 0, ,i*+ ~ > 0,

(5.26b)

and

2,(* = 11\':* + {tl(,'1I*)p(,'1I*)'L\'"C + Cfi(,<¥l*)'(),(,<¥l*)L\p + p(,<¥l*)L\J1.)hi*

+ ..i.(,<¥l*)'"C(,<¥l*)·p(,'1I*K (5.26c)

We now examine the sixteen separate cases mentioned above.
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Case I: (E, E)
Since II* is inducing an elastic state, then by' (4.20a) and (4.21a)

(5.27)

In the context of the approximate theory being developed it follows from (4.20a) and (5.13)
that a necessary and sufficient condition for an elastic state in the motion ,I * (and 21) is
that

gVl/*) + dg < O.

When (5.28) holds, then in view of (4.20a) and (4.2Ia)

(5.28)

(5.29)

Case Il: (E, U)
In this case (5.27) still hold. It follows from (4.20b), (5.13) and (5.14) that necessary

and sufficient conditions for unloading from an elastic-plastic state in the motion 2I>l< are
that

(5.30)

It then follows from (4.20b) and (4.2Ia) that (5.29) still hold.

Case III: (E, N)
Again (5.27) hold. It follows from (4.20c), (5.13) and (5.14) that necessary and sufficient

conditions for neutral loading in the motion 21* are that

(5.31)

Then, by (4.20c) and (4.21a), we see that (5.29) still hold. Consistent with this is the fact
that (5.25b,c) vanish in this case (to within terms of 0(£2) as £-.0) due to the presence of
the factor (5.14).

Case IV: (E, L)
For this case also (5.27) hold. In view of (4.20d), (5.13) and (5.14) necessary and

sufficient conditions for loading in the motion 2I * are that

(5.32)

~E* and 2K are then given by (5.25b) and (5.25c), respectively.

Case V: (U, E)
For this case it follows from (4.20b) and (4.21a) that

gVl/*) = 0, li* < 0,
(5.33)

In view of (5.33), (4.20) and (5.13) a necessary and sufficient condition for an elastic state
in the motion 2I * is that

dg <0. (5.34)

With (5.34) holding, it follows from (4.20a) and (4.21a) that ~E* and 2K* are given by
(5.29).
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Case VI: (U, U)
Again (5.33) hold. It follows from (5.33)" (4.20b), (5.13) and (5.14) that necessary and

sufficient conditions for unloading in the motion 21. * are that

!!.g = 0, li* + ~ < O.

Then ~E* and 2"* are given by (5.29).

(5.35)

Case VII: (U, N)
In this case also (5.33) hold. Necessary and sufficient conditions for neutral loading in

the motion 21. * are that

!!.g = 0, li* + ~ = 0 (5.36)

where (5.33)" (4.2Oc), (5.13) and (5.14) have been used. Again ~E* and 2"* are given by
(5.29). We note that (5.25b,c) vanish in this case.

Case VIII: (U, L)
The relations (5.33) hold. In view of (5.33)" (4.20d), (5.13) and (5.14), necessary and

sufficient conditions for loading in the motion 21. * are that

!!.g = 0, Ii*+ ~ > O.

Then ~E* and 2"* are given by (5.25b) and (5.25c), respectively.

Case IX: (N, E)
For this case, it follows from (4.2Oc) and (4.2Ia) that

g(,<:¥t*) = 0, ,i* = 0, fE* = 0,. 1"* = O.

(5.37)

(5.38)

Then in view of (5.38)" (4.20a) and (5.13), the inequality (5.34) provides a necessary and
sufficient condition for an elastic state in the motion 21.*. ~E* and 2"* are given by (5.29).

Case X: (N, U)
Again (5.38) hold. Necessary and sufficient conditions for unloading in 21.* are that

!!.g = 0; ~ < 0, (5.39)

where (4.20b), (5.13), (5.14) and (5.38)'2 have been used. ~E* and 2"* are again given by
(5.29).

Case XI: (N, N)
The relations (5.38) hold. Necessary and sufficient conditions for neutral loading in 21. *

are that
!!.g = 0, ~ = 0, (5.40)

where (4.20b), (5.13), (5.14) and (5.38)'.2 have been used. Again (5.29) hold.

Case XII: (N, L)
Equations (5.38) hold. It follows from (4.20d), (5.13), (5.14) and (5.38)1.2 that necessary

and sufficient conditions for loading in the motion 21.* are that

!!.g =0, ~ > O.

From (5.25b,c) and (5.38)2 we obtain

(5.41 )

(5.42)
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Case XIII: (L, E)
In this case it follows from (4.20d) and (4.2Ib) that

gV'lt*) = 0, li* > 0,

~E* = ),Vlt*),i*pC'¥t*),

I K* = AV7t*),i*~(,'¥t*)· pC'¥t*)·

(5.43)

In view of (5.43)!, (4.20a) and (5.13), (5.34) is a necessary and sufficient condition for an
elastic state in the motion 21*. Then ~E* and 2K* are given by (5.29).

Case XIV: (L, U)
The relations (5.43) hold. It follows from (4.20b), (5.13), (5.14) and (5.43)1 that

necessary and sufficient conditions for unloading in the motion 21 * are given by (5.35).
Equations (5.29) still hold.

Case XV: (L, N)
Again (5.43) hold. It follows from (4.20c), (5.13), (5.14) and (5.43)! that (5.36) are

necessary and sufficient conditions for neutral loading in the motion 21 *. Then ~E* and
2K* are given by (5.29). Also, (5.25b, c) vanish.

Case XVI: (L, L)
The relations (5.43) hold. In view of (5.43)!, (4.20d), (5.13) and (5.14), necessary and

sufficient conditions for loading in the motion 21* are given by (5.37). ~E* and 2K* are
given by (5.26b) and (5.26c), respectively.

This completes our analysis of the sixteen cases.
Next, we return to the restriction (4.49). Employing (!'i. 17}-(5. 19), (5.21) and (5.11), we

deduce from (4.49) that

(5.44a)

where

with

o ~ ~
~I' = _I'Ct'¥t*)· ~E* + --V7t*H~E* -{E*) + '" I *(!'¥t*)(2K* - IK*)

oE* oPE* uK

= 0(£) as £--+0,

Next we obtain an expression for 2P *. It follows from (4.32)! that

(5.44b)

(5.44c)

(5.45)

and hence by (4.44), (4.7h, (5.1), (5.4) and (5.5)

2P * = IP *{det(H + l)} -.1 = IP *(1 - tr H) + 0(£2) as £--+0. (5.46)

Turning now to the traction condition (4.27), we note first that it follows from (4.26),
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(4.44) and (5.16) that

(5.47)

It then follows from (4.27) that

(5.48)

Paralleling (5.47), the relationship between the Cauchy stress tensors 2T* and I T* is readily
seen to be

T* = (I - tr H) T* + T*HT+ H r* + _1_ F*I1S*( F*)T
2 I 1 I IJ*1 I'

(5.49)

where terms of 0«(2) as (-+0 have been neglected.
We digress momentarily in order to compare (5.49) with the corresponding equation,

(4.31), of[7J for the purely elastic case. In [7] the constitutive equation for 1T* is of the
formt

T* * F* oi ( E*)( F*)T
I = IP 1 oE* I 1 , (5.50)

with a similar equation for 2S*, In the elastic region, fE*, qE*, 1"* and 2"* have constant
view of (4.26) and (4.32)1

S* - oi (E*)
I - oPoE* I (5.51)

with a similar equation for 2S*, In the elastic region, fE*, ~E*, 1"* and 2"* have constant
values and recalling (4.31) we may make the identification

oPo~*CE*) = SUfI*), (~E*, 1"* constant)

with a similar equation holding for the motion 21.*. It follows from (5.52) that

4/ _ o2i (E* _ I oS ( 111,* ( E* * )
..It - oE*oE* I ) - opoE* 1"U)' f ,I" constant,

(5.52)

(5.53)

where f has been introduced for purposes of comparison with [7]. Now consider Case
I: (E, E) above. It follows from (5.27b and (5.29) that if a material exhibits elastic
behavior over. some time interval then

(5.54)

where lA(X), 2A(X), lk(X) and =k(X) represent initial values of the corresponding
variables. If we take

(5.55)

then by (5.54)

(5.56)

tin (7) we used the notation !<Di + DTi) for olloE*.
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When (5.56) hold, it follows from (5.49) that

2T* (I - tr H), T* + I T*H T + HI T* + ~ ,p *,F*X[(,F*)T(H + H1,F*]CF*)T,
(5.57)

where (5.53), (4.32), (5.16b) and (5.6b) have also been used. The result (5.57) coincides with
(4.31) of [7].

It is interesting to note that whenever the eqns (5.56) are satisfied,t (5.49) reduces to
an equation of the form (5.57).

Returning now to the general case, it follows from (4.48), (4.44). (5.1)1' (5.4), (5.5) and
(5.9a) that

(5.58)

where terms of 0«(2) as ( ....0 have been omitted. It then follows from (4.22), (5.49) and
(5.58) that to within terms of 0«(2) as ( .... 0,

We will now demonstrate that the eqns (5.26b,c) and (5.49) of the approximate theory
are properly invariant under arbitrary superposed rigid motions (2.7). Corresponding to
the motions (.1 +)*(a = 1,2), the measure defined in (5.1)1 has a value

(t = sup IIH +(ex +)*. nil,
(,X+)*Ei"'''

(5.60)

with similar expressions for (/, (t and E4". It follows from (4.52), (4.74), (5.1) and (5.60)
that

I:: I~ = (I' (5.61)

Similarly, in view of (4.52), (4.75) and (4.58)1' (/ = (2' ()+ () and (4- = (4' Consequently,
if(+ =maX{Et, (2+, E/, E4+} then, recalling (5.4)

( + = f. (5.62)

Let

It then follows with the help of (4.55)1' (4.74) and (5.6b) that

!1E" * = !1E*.

(5.63)

(5.64)

Associated with the motions (al + )*(0: 1,2) we may define quantities !1g + and ~ +

as in (5.lOb) and (5.12b). Thus, for example,

!1g + =~( rJU + *). !1E H +~( 'Yt + *). (~E H - PE "*)aE+* , (jPE+* , " I

+ og ''Yt+*)' K +* - K +*).
~l \2 ,

(5.65)

It is readily seen, with the help of (4.58), and (5.64) that each term in (5.65) coincides with

tEven during loading. for example.
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the corresponding term in (5.lOb), and consequently

Similarly, in view of (4.58)1> (4.56)" (4.75) and (5.12) it easily follows that

e+ = e·
Corresponding to the motions (.1 +)*(a = 1,2), instead of (5.26b), we have

(5.66)

(5.67)

where

(5.69)

and Ap + and AA. are defined in a manner paralleling (5.19b) and (5.20b), respectively. It
follows from (4.58)" (4.55)6' (4.56)3' (4.19) and (5.69) that

(5.70)

With the help of (4.58)1> (4.55)1' (4.74), (5.62), (5.67) and (5.70) it is evident that (5.68)
coincides with (5.26b). Therefore (5.26b) is a properly invariant statement. A parallel
argument demonstrates that (5.26c) is also a properly invariant statement.t Furthermore,
it is now clear that the equations that arise in the consideration of the sixteen separate cases
are all properly invariant. Likewise, (5.44a) is a properly invariant statement.

The stress 2THin the motion (21 +)* is given in accordance with (5.49) by

where terms of 0«( +)2) as (+ -+0 have beep omitted, and where,

It follows from (5.72), (4.31), (4.58)" (4.61)5' (5.64) and (5.16b) that

ASH = AS*.

(5.72)

(5.73)

Finally, from (5.49), (5.71), (4.74), (4.55)1' (4.59)1' (5.73) and (4.60) with a = I, we obtain

(5.74)

so that the transformation law (4.60), with a = 2, is satisfied when 2T* is given by (5.49).
Thus, (5.49) is a properly invariant statement.

In order to complete the infinitesimal theory of motions superposed on a given motion,
we must establish an approximation to the balance of linear momentum (4.34) for the
motion 21*· To this end, in addition to the measures (" (2' (3' (4 defined at the beginning

tEquations (5.25b,c) are, of course, also properly invariant.

5S Vol. 19. No. 12-H
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of this section we need to introduce

(5.75a)

where in (5.75a)I.2 we may define the norm IIA II ofa third order tensor A = Aijke, ® ej ® ek

by IIA 11
2 = AjjkAjjk' Now let

(5.75b)

£t then foHows from (5.49), (4.44), (5.1), (5.4), (5.9a) and (5.75) that

(5.76a)

where (0, T*;olx*)H has a component form

(5.76b)

It follows from (5.76) and (5.49) that

Hence,

j) T* j} T* -
2div* 2T * = _2_[/] = tdiv* 2T * - -1-[H7] + 0(t 2) as (-.0.

02X* v1x*

From (5.76a) we obtain

where

(5.77)

(5.78a)

(5.78b)

fJ = - VI T* [H1] + IdiV*{ - (tr H)I T* + I T*H T + HI T* + Jl*IF*IJ.S*(IF*f}
v[x* I

= O(~) as ( ....... 0. (5.78c)
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We also observe that, in view of (5.49),

oT* -
Idiv*(2 T* - IT*) =-'-[H7] + fJ + 0(£2) as £-+0

OIX*

= 0(£) as £-+0. (5.78d)

We note that each tenn in (5.76), (5.77) and (5.78) is unaltered under superposed rigid
motions (2.7).

Next we derive expressions for velocity and acceleration. In view of (4.33), (4.4)2' (4.9)
and (4.44)

o *'v* - fl* = _1_( x* 1*) + H v* = L\v* (say)
2 I 01 * I' I

and hence

where use has been made of the relations

Ii oH * *) oH ( * *) *=~(IX ,1 +~ IX ,1 IV,
vI vlx

(5.79)

(5.80)

(5.81)

We note that each tenn in (5.79) and (5.80) is unaltered under superposed rigid motions
(2.7). It follows from (5.79), (5.80), (5.1),; (5.74) and (5.75) that

-
L\v* = 0(£) as £-+0,

-L\v* = 0(£) as £-+0.
(5.82)

We observe that instead of using the measure £2 in (5.1)2' we could in view of (5.81)1 have
used the maximum of £5 and £8 in (5.75a).

Ifwe now substitute (5.78b), (5.46) and (5.80) in the balance of linear momentum (4.34)
for the two motions ,1* and 21*, we find that the difference in body forces is given by

I -
2b* - Ib* = - ..fJ + L\v* + (Ib* - IV*) tr H + 0(£2) as £-+0

IP

= 0(£) as £-+0. (5.83)

We note that each tenn in (5.83) is unaltered under superposed rigid motions (2.7).
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